Location-Dependent Excitatory Synaptic Interactions in Pyramidal Neuron Dendrites

نویسندگان

  • Bardia F. Behabadi
  • Alon Poleg-Polsky
  • Monika Jadi
  • Jackie Schiller
  • Bartlett W. Mel
چکیده

Neocortical pyramidal neurons (PNs) receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Passive normalization of synaptic integration influenced by dendritic architecture.

We examined how biophysical properties and neuronal morphology affect the propagation of individual postsynaptic potentials (PSPs) from synaptic inputs to the soma. This analysis is based on evidence that individual synaptic activations do not reduce local driving force significantly in most central neurons, so each synapse acts approximately as a current source. Therefore the spread of PSPs th...

متن کامل

Distance-Dependent Homeostatic Synaptic Scaling Mediated by A-Type Potassium Channels

Many lines of evidence suggest that the efficacy of synapses on CA1 pyramidal neuron dendrites increases as a function of distance from the cell body. The strength of an individual synapse is also dynamically modulated by activity-dependent synaptic plasticity, which raises the question as to how a neuron can reconcile individual synaptic changes with the maintenance of the proximal-to-distal g...

متن کامل

Art - Magee (A)

Most neurons of the mammalian CNS receive information through synaptic input located predominately within dendritic arbors. Here in the dendrites, thousands of excitatory and inhibitory synaptic inputs are blended together to form a coherent output response. Whereas synaptic inputs are widely distributed across complicated dendritic arbors, action potential output usually occurs in a relatively...

متن کامل

Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons.

The Schaffer collateral pathway provides hippocampal CA1 pyramidal cells with a fairly homogeneous excitatory synaptic input that is spread out across several hundred micrometers of their apical dendritic arborizations. A progressive increase in synaptic conductance, with distance from the soma, has been reported to reduce the location dependence that should result from this arrangement. The ex...

متن کامل

Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons.

The manner in which the thousands of synaptic inputs received by a pyramidal neuron are summed is critical both to our understanding of the computations that may be performed by single neurons and of the codes used by neurons to transmit information. Recent work on pyramidal cell dendrites has shown that subthreshold synaptic inputs are modulated by voltage-dependent channels, raising the possi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012